

How to troubleshoot every complication on your monitor

Heather Carter, MPS, LVT, VTS (Anesthesia & Analgesia) Vice President of People & Culture

About Me

SCIENCE FOR A SMARTER WORKPLACE

Summary of Content

- Multiparameter monitor overview
- Evaluation of each parameter
- Morphology and characteristics
- How to resolve each complication

Monitors- how to triage complications

What to do

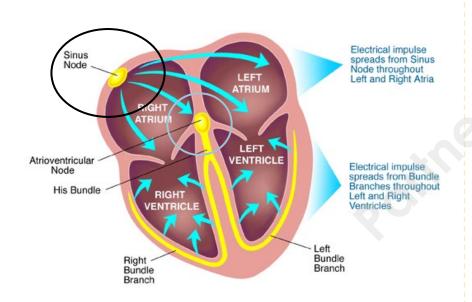
- Observe the entire patient
- Know what drugs are on board
- Know the scope of the procedure
- Prepare and anticipate

What not to do

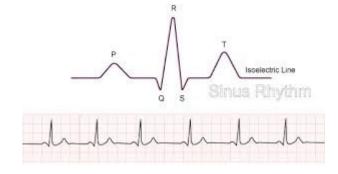
Panic

ECG

What is it


 Non-invasive method to observe the electrical activity of the heart to measure its rate and rhythm

Why we need it


- We administer drugs that can have profound cardiac effects
 - Alpha-2s
- Conditions cause arrhythmias
 - GDV

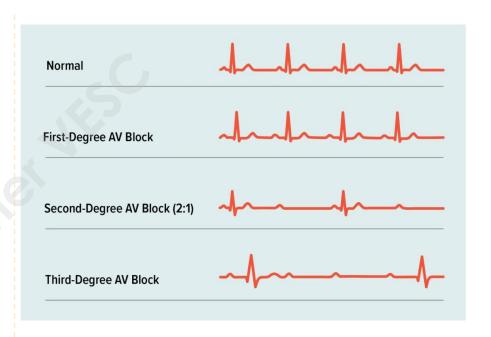
ECG Review

- SA node= P wave
 - Atrial depolarization
- AV node= QRS
 - Ventricular depolarization
- Ventricular repolarization= T wave

Trouble shooting your ECG

Do

- Confirm lead placement
 - Move closer to the heart
- Change/confirm lead
 - I vs II vs III
- Confirm leads are saturated
- Confirm speed
 - 25 vs 50mm/sec


Do not

Panic

Troubleshooting your ECG

- Atropine vs. glyco vs. atipamezole
- What dose?
- When do we see 3rd degree AV block

VPCs vs. Escape beats

Ventricular escape in the setting of sinus arrest:

Ventricular escape in the setting of complete AV block:

VPCs vs. Escape beats

VPCs

- Tachycardia with rates of 160+ bpm
- Originates in the ventricles instead of the SA node
- R on T phenomenon
 - The R wave of the beat falls on the T wave of the preceding normal beat
- Couples or triplets/multiform
- Treat with lidocaine
 - 2mg/kg

Escape beats

- Bradycardia with ventricular rate40bpm
- Wide QRS complexes (120ms)
- Regular non-conducted P waves or no P waves
- Treat with atropine
 - 0.02-0.04mg/kg

ECG Troubleshooting Hacks

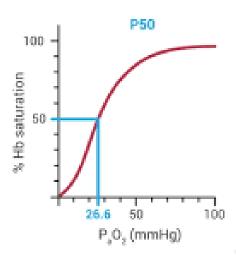
- ALWAYS look at your blood pressure
 - ALWAYS
 - Why?
- Confirm the pulse source
- If nervous, check the pulse
 - Sublingual vs. dorsal pedal

What happens if you treat an escape beat like a VPC? Or vice versa?

Questions about ECGs?

SP₀2

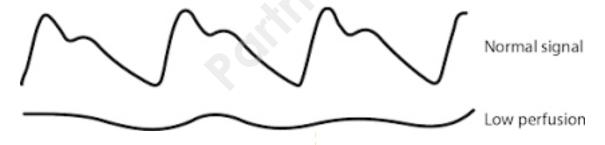
What is it


Abbreviation for peripheral oxygen saturation

Why we need it

 Key indicator of how well the heart and lungs are working

SPO₂ Review


 Graphical representation of the relationship between partial pressure of oxygen and the percentage of hemoglobin saturated with O2

SPO₂ Troubleshooting

- Probes are parallel
- Toes vs. tongues vs. ears

- Is it really low?
 - Breathe!
 - PEEP

Figure 4: Normal vs. low perfusion pleth waveforms

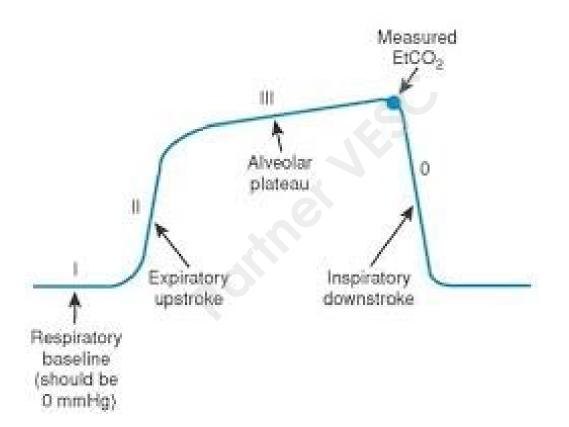
SPO₂ Hacks

But seriously no water

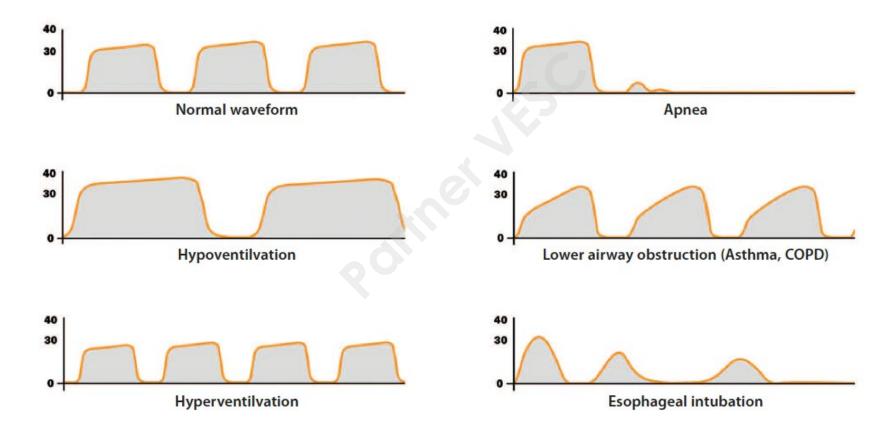
Questions about SPO2?

ETCO₂

What is it


 The amount of CO₂ at the end of an exhaled breath reflecting V (ventilation) and Q (perfusion)

Why we need it


- The mosssst important parameter
- NEVER lies
- Real time information on cardiac output
- Real time information on tube placement and patency

ETCO₂ Review

Troubleshooting your ETCO2

ETCO₂ Hacks

- Adaptor placement
- Flush the line
- Replace the filter
- Side-stream vs. mainstream
- Calibrate

Mainstream and Sidestream

CAPNOSTAT® 3 Mainstream CO₂ Sensor

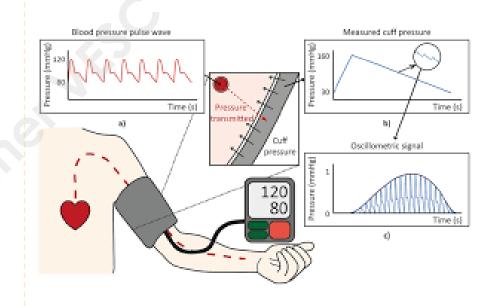
LoFlo™Sidestream CO₂ Module

Questions about ETCO2?

NIBP

What is it

 Noninvasive oscillometric blood pressure that details SAP, DAP, and MAP


Why we need it

 To ensure adequate perfusion to vital organs such as the kidneys and brain

NIBP Review

- Cuffs are 40% of the circumference of the limb
- Reliable
- inflates a cuff to a pressure above systolic pressure, occluding the artery, then slowly deflates while the machine detects oscillations in the artery wall caused by blood flow
- Uses an algorithm to analyze the amplitude of oscillations to determine the systolic and diastolic pressure points

NIBP Troubleshooting

Hypotension

- What is the heart rate?
- Depth
- Fluids
- Pressors
- Confirm

Hypertension

- What is the heart rate?
- Depth
- Analgesia
- Confirm

NIBP Hacks

- Time for readings every 3 minutes
- Use the humerus in cats
- Error codes
 - Over pressure
 - Timing out

Tape vs. no tape on the cuff?

Doppler

What is it

 A process of using high-frequency sound waves to listen for the sounds of blood flow through an artery as a cuff is inflated and deflated

Why we need it

- Safety net to oscillometric
- More reliable in cats

Doppler Review

- Uses an ultrasonic probe attached to a speaker to provide an audible sound for each pulse beat
- Use of a blood pressure cuff and a sphygmomanometer to obtain blood pressure readings
- Systolic? Or MAP? What about in cats?

Doppler Hacks

- Prep area
- Apply gel
- Place the crystal on the artery
- Tape the crystal in place by threading the cord through the paw
- THEN turn it on
- Voila! I guarantee you have it in the right place!

Temperature

What is it

- One of the most critical parts of anesthesia management and every patient needs heat support
 - But what if they are hot?
 - And what if the procedure is fast?

Why we need it

 Cold patients have longer recoveries, delayed healing, and poor drug metabolism

Temperature Review

- The higher a patient's oxygen flow rate, the colder they will get
- Inhaled gases are colder than room air
- Hypothermia causes a decrease in MAC- so cold pets get deeper faster
- Patients lose heat from the top

- Causes bradycardia, vasoconstriction, and prolonged recoveries
 - Bradycardia causes a decrease in cardiac output which is evident by a decrease in BP

Temperature Hacks

Noses!

Questions about BP or Temp?

Now let's apply what we learned!

Let's practice! 35kg dog

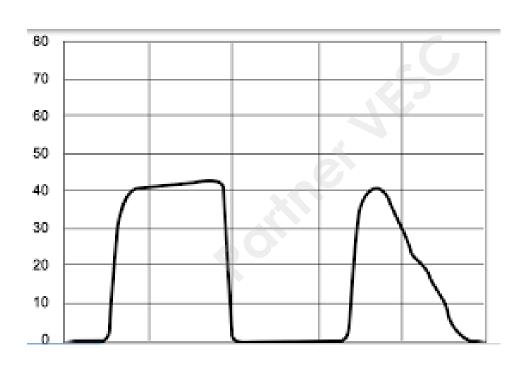
- HR= 177
- What do you want to do?
- BP= 61
- Now what do you want to do?

- Why fluids?
- Why not increase gas?
- Why not treat for pain?

Let's practice!

- 4kg, 1yr cat, OHE
 - Fentanyl, midazolam, and propofol
- HR = 88
 - No arrhythmia
- Iso at 1.5%
- MAP = 54

- What do you want to do?
- Do we turn down the gas?
- So, what do we do?
- Glyco!


Let's practice!

- 22kg dog
- ETCO2= 58
- Iso at 1.5%
- What do you want to do first?

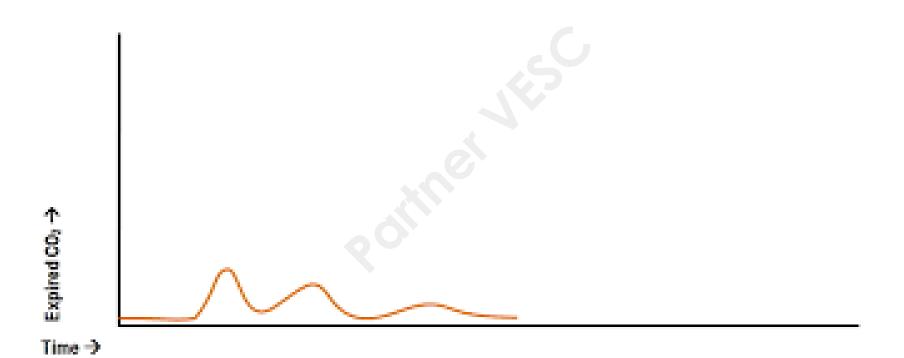
- What not to do
 - Turn down the iso?

Let's practice! How do you fix this?

18kg dog

- HR= 90
- BP= 73
- ETCO2= 55
- Resp= 7
- Temp= 100.0
- SPO2= 92
- Iso at 1%

- What to fix?
- What order?


5yr, MN, 3okg dog

- HR= 130
- BP= 45
- ETCO2= 24
- Temp = 95.5
- Iso at 2%

- What do fix?
- What to fix first?

How do you fix this?

3yr, MN, 14kg dog

- HR= 60
- BP= 66
- SPO2= 99
- ETCO2= 49
- Temp= 99.0
- Iso at 2%

- Laceration repair
 - Hydro, dexdom, ketamine
 - Propofol

Key Takeaways

- Multiparameter monitoring is critical to preventing emergencies
- You need to maintain a surgical and anesthetic plane- DO NOT turn down the gas without a safety net

Always use all the monitoring equipment

Shortcut Troubleshooting

- Bradycardia
 - Atropine
 - Glyco
 - NO changes in iso
- Tachycardia
 - Fluids
 - Analgesia
- Hypotension
 - Atropine or glyco
 - Fluids
 - Pressors
- Hypertension
 - Analgesia
 - Depth

- Hypocapnia
 - Depth
 - Decrease tidal volume
- Hypercapnia
 - Depth
 - Increase tidal volume
- Hypoxia
 - Manual respirations
 - PEEP
- Hyperthermia
 - Removal of heat
 - Fluids
 - Increased MAC
- Hypothermia
 - Heat support
 - Decreased MAC

Thank you!!!

"

Hcarter@PartnerVESC.com

